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1. INTRODUCTION

This paper answers a question concerning the expansion of functions in
an absolutely convergent series of Jacobi polynomials. The Jacobi poly­
nomials P~~''')(x) are orthogonal on the interval [-1,1] with respect to the
weight function

(ex > -1, f3 > -1).

They satisfy the relation

(see Szego [5, Section 4.3]), usually called Rodrigues's formula. The
orthogonality property is given by

r P~~''')(x) p;:,I3)(X)(1 - x)~(1 + x)" dx = hn(ex, (3) Sm,n (1.2)
-1

with

2~+I3+lr(n + ex + 1) r(n + f3 + 1)
hn(ex, (3) = (2n + ex + f3 + l)n! r(n + ex + f3 + 1) , (1.3)

Sm.n = 0 if m oF nand Sm.n = 1 if m = n.
With a function f(x) we can associate a series:

00

f(x) "-' I akp~~,I3)(x),
k~O

where

(1.4)

ak = (hk(ex, (3»-1 (1 f(x) p~a,I3)(x)(1 - x)a(1 + X)1l dx, (1.5)

387



388 BAVINCK

provided that the integral in (1.5) exists for all k. The coefficients ak are then
called the Fourier coefficients off(x).

DEFINITION. A function f(x) is said to be in the class A(ex, [:3) if
L;~o Iak I I P!t,/l)(x)1 converges uniformly on the interval -1 :;;;; x :;;;; 1, where
ak are the Fourier coefficients off(x).

It is a well-known fact (see Szego [5, Section 7.32]), that the Jacobi
polynomials reach the maximum of their absolute value on the interval
[-1,1] at x = 1, provided that ex ~ [:3 and ex ~ -to Since

p<",,/l)(1) = T(k + ex + 1) = O(k"')
k k! T(ex + 1) ,

it follows that a necessary and sufficient condition for f(x) to be in A(ex, [:3)
(ex ~ [:3, ex ~ -t) is

00

L [ak I k'" < 00.
k~O

We shall study the question: for which values of y and 8 does

(1.6)

f(x) E A(ex, [:3) imply f(x) E A(y, 8); (A)

where ex ~ [:3 and ex ~ -t?
In the following it will always be assumed that ex ~ max([:3, -t), 8 > - 1.

2. THEOREMS

There is a unique way of expressing the polynomials Pk~·/l)(X) in terms of
the polynomials pJ',,6)(X), j = 0, 1,2,... , k:

k

Pi",,/l)(x) = L Cik(ex, [:3; y, 8) P~y,8)(x).
i~O

(2.1)

The coefficients Cjk(ex, [:3; y, 8) are defined to be 0 if j > k. Rivlin and
Wilson [4] have proved the following:

THEOREM 1. If Y ~ 8, y ~ -t and Cik(ex, [:3; y, 8) ~ 0 for all j and k,
then relation (A) holds.

Proof Letf(x) E A(ex, [:3). Then

00

L I ak I Pi",,/l)(1) < 00,
k~O
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where the a" are given by (1.5). We now consider the expansion

00

f(x) f'ooo.I L bjPjy,8,(X).
j~O

Then

bj = (hiY, 8))-1r f(x) Pjy,8l(X)(l - X)Y(l + x)8 dx
-1

= (hiY, 8))-1 f
1

1~O a"Pk~'6'(X)l Pjy,8l(X)(l - x)Y(l + X)8 dx

00

= L a"cj"(rx, fJ; Y, 8).
/c~j

389

The term-by-term integration is justified by the uniform convergence. Since
Y ~ 8 and Y ~ -t, we know that

max I P(v,8'(X)[ = P.(v,8'(l), .i = 0, 1,2,....
-l:S;x<t 3 )

Thus it remains to show that the sequence

m

Fm = L I bj I Pjv,6)(l)
j~O

is bounded.
Using the fact that Cjle(rx, fJ; Y, 8) ~ °for all j and k, we obtain

m 00

~ L Pjy,6)(l) L I ale I cj/c(rx, fJ; Y, 8)
j~O k~j

00 m

~ L I ale I L cjle(rx, fJ; y, 8) p;v,8l(l)
,,~O j~O

00

~ L I ak I Pk~,6)(l) < 00.
le~O

Q.E.D.
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It is known (see Askey [I)) that the positivity condition for cjiex, fJ; Y, 8)
is satisfied in the following cases (see Fig. 1):

(i) fJ = 0 and ex > Y, Y ;? 0,
(ii) ex = fJ, y = 0, and ex > y,

(iii) ex = y, fJ = 8 - n (n a positive integer), y ;? o.

/--- (a, S + 1)

~---- (a, S)

y

FIGURE 1.

We shall prove now, that relation (A) holds in the following cases:

(i) ex = y, fJ < 0, Y ;? 0,

(ii) ex = y + fl-, fJ = 0 + fl-, fl- > 0, Y ;? max(8, -t), 0 > -1.

THEOREM 2. If Y = ex and 0 = fJ + fl-, where fl- > 0 and y ;? 0, then
relation (A) holds.

Proof Following the proof of Theorem 1, it remains to show that the
sequence

Fm = I Pj",6l(l) If akcjk(ex, fJ; y, 0) I
j~O k~j

is bounded.
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We now have
m 00

Fm < L: Pjy,6)(I) L: I ak I I Cjk(ex, f3; y , 8)1
j~O k~j

00 m

< L: I ai' I L: I cj/ex, f3; Y, 8)1 Pjy,6l(l).
k~O j~O

As
k

P~rt.,IJ)(x) = L: cjk(ex, f3; ex, f3 + p,) P~rt.,IJ+I')(x),
j~O

391

it follows from the identity

Pj,rt.,lJl(X) = (_1)n P;:' rt.) ( - x)

that

(see Szego [5, Section 4.1])

k

Pl:'rt.)(x) = L: (_1)k- jcjk(ex, f3; ex, f3 + p,) P~IJ+I"rt.)(x).
j~O

In Section 9.4 of Szego [5] the following relation is derived:

P(IJ,rt.)( ) _ T(k + ex + 1)
k X - T( -p,) T(k + ex + f3 + 1)

IT(k +.i + ex + f3 + 1) T(k - j - p,) /
k I X T(j + ex + f3 + p, + 1)(2j + ex + f3 + p, + 1)\

x ~o T(k + j + ex + f3 + p, + 2) T(k - j + 1) T(j + ex + 1)

X P~IJ+I"rt.)(x).

Hence
\T(k + ex + 1) T(k + j + ex + f3 + 1) T(k - j - p,)/

<: ~ ~! X T(j + ex + f3 + p, + 1)(2j + ex + f3 + p, + 1) \
Fm~ ~j I ak Ij~ \T(-p,) T(k + ex + f3 + 1) T(k + j + ex + f3 + p, + 2)/

X T(k - j + 1) T(j + ex + 1)\
X p~a,IJ+I'}(l).

Since T(k + ex)/T(k) = O(krt.), we can estimate the order of magnitude ofFm.

00 k

Fm < C L I ak Ik-IJ I (k +j)-I'-l(k - j)-I'-ljrt.+IJ+I'+l
k~O j~O

00

~ eLI a k I krt. < 00.
k~O
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THEOREM 3. If y = a - fL and 8 = fJ - fL, where fL > 0 and
y;;? max(8, -t), 8> -I, then relation (A) holds.

Proof It suffices to show that

"L 1 cjia, fJ; a - fL, fJ - fL)! PjIX-Il,Il-Il)(l) = O(kIX).
j~O

Substituting the values of Cjk(a, fJ; a - fL, fJ - fL), we obtain

k

L PjIX-Il,Il-Il)(l)(h;Ca - fL, fJ - fL))-1
j~O

= (i r(j + a + fJ - 2fL + 1)(2j + a + fJ - 2fL + 1))
j~O T(a - fL + I) r(j + fJ - fL + I)

IfIT ( B)2IX-21l+1 ( B)21l-21l+1 I
X 0 P~IX,Il)(cos B) P~IX-Il,Il-Il)(cos B) sin 2: cos 2: dB .

We will take the liberty of omitting lower order terms in k when they are
inessential.

We shall take the integral over [0,17/2] only. The interval [17/2,17] can
be handled similarly. It suffices to show that

(i r-Il+1)
J~O

X IJ: /2 (sin ~t-21l+1 (cos ~t-21l+l P~IX,Il)(cos B) PjIX-Il,Il-Il) (cos e) de I

= O(kIX).

We need the following estimates for Jacobi polynomials and Bessel functions:

1 P~IX,Il)(cos B)! ~ AnIX,

IP~IX,Il)(COS e)1 ~ An-1/2B-IX-1/2,

(2.2)
(Szego [5, 7.32.6]),

(2.3)

1 JIX(x) 1 ~ AxIX , 0 ~ X ~ I,

1 JIX(x) I ~ Ax-1/2, x ); I,

(Szego [5, 1.7I.I0]),

(Szego [5, 1.7I.I I]),

(2.4)

(2.5)

(
2 )1/2 ( 17 17)JIX(x) = 17X cos X - a 2 - 4 + O(r3

/
2
), (Szego 5, 1.71.7]).

(2.6)
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We shall also need the Sonine integral

foo Jiat) Jp(bt) dt = (a2 - b2)IL-p-1
o bpt IL- p-1 2IL- p-1aILr(fL - v) ,

and Hilb's formula

a > b (Watson [6, Section 13.46])

(2.7)

(sin ~)~ (cos ~)IJ P(~,IJ)(cos 0) = N-~ r(n + ex + 1) (-J-)1/2 J (NO)
2 2 n n! sm 0 ~

1

01/20(n-3/2) if en-1 :::::: 0 :::::: 7T - €+ ' "" "" ,
Oa+20(n~), if 0 < 0 < en-I,

where N = n + (ex + f3 + 1)/2; e and € are fixed positive numbers [5,
8.21.17].

We follow the method used by Askey and Wainger [2], and therefore
wish to replace

(
0)a-IL+I/2 ( 0)8-1'+1/2

21 / 2 sin 2: cos 2: Pja-IL,IJ-IL)(cos 0)

by 01/2Ja_JJO), J = j + (ex + f3 - 2fL + 1)/2, using Hilb's formula (2.8).
We have then to consider

k I fTT /2 ( 0)~-IL+I/2 ( 0)IJ-IL+l/2
I = i~}"'-IL+1 0 sin 2: cos 2: Pka,IJ)(cos 0)

X 121 /2 (sin~)a-IL+I/2 (cos ~t-IL+I/2Pj~-IL.IJ-IL)(cos 0)

_ J-~+ILr(j + ex - fL + 1) 01/2J (JO)! dOl
r(j+I) -I' .

Setting I = II + 12, where, in II' the range of integration is [Ilk,7T12]
and in 12, [0, 11k], and using some of the estimates mentioned above, we get

(
k fTT/2 )h = 0 L}"'-IL+1 k-I/20-a-l/20j-3/20a-IL+I/2 dO
i~O 11k

= O(k~-IL (:: 01-1' dO)

= O(k~-IL(e + k IL- 2+ 01',2 log k»

= O(k~).

12 = o(I j~-IL+l f/k kaOk-3/20a-IL+I/2 dO)
)~O 0

= O(k2a-IL+l/2 (/k Oa-IL+3/2 dO)

= O(ka- 2).
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The process of replacing the other Jacobi polynomial by the appropriate
Bessel function is similar.

Thus we are led to investigate

where K = k + (ex + f3 + 1)/2. We want to replace (sin 8/2)-" (cos 8/2)-"
by 8-". It is easily seen that (sin 8/2)-" (cos 8/2)-" = (8/2)-" G(8), where
G(O) = 1, G(8) is bounded and 1 - G(8) = 0(82). Thus we have to consider

We set E = E1 + E2 , where in E1 the range of integration is [0, l/k], and
in E2 , [1/k, ?T/2].

Applying some of the estimates mentioned above, we get

Using the asymptotic formula for Bessel functions and the error term,
we obtain, for f.l, < 1,

= O(k-1/2 I.r-"+l/2! r/2

8-"(I - G(8» ei(J±K)8 d8 I)
J~O 11k
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The case JL ;;;: 1 is easily handled:

= \O(k~~"+l(c + k"~3)), JL # 3,
IO(k~-210g k), JL = 3,

= O(ka).

395

Finally, we want to replace the range of integration [0, 7T/2] by [0, (0).
Therefore we investigate

t jex-"+l Ir Bl-"Jex_,,(JB) JiKB) dB I= Al + A2
j~O ~/2

by using (2.6). Here Al contains the main terms and A2 all the error terms.

= O(k-1/2 j~jex-"+l/2(k ±j)-I)

= O(kex-" log k).

Up to an error term that we have estimated, we may write for L,

t jex-J-L+l/ rBI-J-LJex_JJB)Jex(KB) dB I·
J~O 0

Using Sonine's integral (2.7), this leads to

= O(k-ex ±pex-2"+I(k + j),,-I(k _ j)"-l)
J=O
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Combining all the estimates, we have shown that

k

L I Cjk(ex, fJ; ex - p" fJ - p,)! Pja-",B-I')(1) = O(ka),
j~O

which proves Theorem 3.

3. RESULTS

Combining Theorems 1, 2 and 3, we see that for all (y,o) in the shaded
region of Fig. 2, relation (A) holds. We shall show now by means of examples
that that region is exactly the set of all (y, 0) with y ~ -t, for which (A)
holds.

Consider, first, the function (1 + x)", p, > O. Its Fourier coefficients are

an = hn(ex, fJ»-1 r p~a·lJ)(x)(1 - x)a(1 + x)tl+" dx.
-1

(a,a)

FIGURE 2.

y
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Using Rodrigues's formula (1.1) and integrating by parts, we have

an = n ~_1)n Jl (1 + x)" (~)n {(l - X)n+~(1 + X)n+8} dx
2 n. hiex, (1) -1 dx

= r(p, + 1) r (1 - x)n+~(1 + x)8+" dx
2nn! hn(ex, (1) r(p, - n + 1) -1

2"= (_I)n+ l - r(p, + 1) sin p,Tr r(f1 + p, + I)(2n + ex + f1 + 1)
Tr

(3.1)

r(n + ex + f1 + 1) r(n - p,)

x r(n + ex + f1 + p, + 2) r(n + f1 + 1) .

Thus

It follows that (1 + x)" E A(ex, (1) if ex - f1 < 2p,.
From (3.1) it is easily derived that the function (1 + x)", with

(ex - (1)/2 < p, < (y - 0)/2, p, not an integer, belongs to A(ex, (1) but not
to A(y, 0). Thus we have found a function for which relation (A) fails in
region II of Fig. 2.

In the same way we can calculate the Fourier coefficients of the function
(1 - x)" and obtain

It follows that (1 - x)" E A(ex, (1) if p, > O.
But if 0 > y, the maximum of the absolute value of the Jacobi polynomials

is assumed at x = -1 and p,~.B)(-1) = O(nB). If 0 > y, the function
(1 - x)", with 0 < p, < (0 - y)/2, p, not an integer, belongs to A(ex, (1) but
not to A(y, 0). Thus, (A) is not valid in region I of Fig. 2.

In order to decide whether relation (A) holds in region III, we study the
function Ix I". Here

an = (hn(ex, (1»-1 f
l

I x I" p~~.8)(x)(1 - x)~(1 + X)8 dx

= (hn(ex, (1»-1 II: X"p~~·8)(X)(1 - x)~(1 + X)8 dx

+ (_1)n I: x"P::.~)(x)(1- X)8(1 + X)~dxl·
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If Re j-t > n - 1, we can use Rodrigues's formula and integrate by parts.
We obtain

(2n + ex + f3 + 1) niL + 1) T(n + ex + f3 + 1)
2n+CJ.+fJ+lT(n + f3 + 1) T(ex + j-t + 2)

x 2Fl(j-t - n + 1, -f3 - n; ex + j-t + 2; -1)

(-I)n (2n + ex + f3 + 1) T(j-t + 1) T(n + ex + f3 + 1)
+ 2n+CJ.+f3+1T(n + ex + 1) T(f3 + iL + 2)

x 2Fl(j-t - n + 1, -ex - n; f3 + j-t + 2; -1). (3.2)

The hypergeometric series 2Fl (a, b; c; -1) is absolutely convergent if
Re(a + b - c) < 0, which means here -ex - f3 - 2n - 1 < O. This is
always satisfied (if n ?:= 1). In this case 2Fl(a, b; c; -1) is an analytic function
of the parameters a, band c. Since for Re j-t > n - 1, an is given by (3.2),
it follows by analytic continuation that (3.2) holds for all j-t with Re j-t > -1.
Using the simple relation

2Fl(a, b; c; z) = (1 - Z)-b 2Fl (b, c - a; c; z ~ 1)

= (1 - Z)-b 2Fl (c - a, b; c; Z ~ 1)

[3, Section 3.8, (4)], an can be written in the following way:

(2n + ex + f3 + 1) T(j-t + 1) T(n + ex + f3 + 1)

2CJ.+1T(n + f3 + 1) T(ex + j-t + 2)

X 2Fl(ex + n + 1, -f3 - n; ex + j-t + 2; l)

(
-I)n (2n + ex + f3 + 1) T(j-t + 1) T(n + ex + f3 + 1)

+ 2f3+1T(n + ex + 1) T(f3 + j-t + 2)

X 2Fl(f3 + n + 1, -ex - n; f3 + j-t + 2; l).

An asymptotic expansion of the hypergeometric function in this case, for
large n, has been given by Watson [7].

The leading term is

(
.. 1 - Z) ro-.J 2a+b-1TO - b + n) T(c)(1 + e-'y-a-b-l/2

2Fl a + n, b - n, c, -2- (mr)l/2T(c _ b + n)(l _ e-')c-l/2

X {e(n-bl' + exp[±i7T(C - l)] e-(n+al'}
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where , is defined by z = cosh' and Re' ? 0, -1T:(; 1m , :(; 1T. The
upper (lower) sign is taken if 1m z > (<) O. In the case in which z - 1 is
real and negative it is supposed that z attains its value by a limiting process
which then determines if arg(z - 1) is 1T or -1T. The discontinuity in the
formula is only apparent; if z crosses the real axis between ± 1, account
has to be taken of the discontinuity in the value of 1m ,. Therefore,

(
nct+lT(n + ~ + 1) + n8+1T(n + ex + 1) )

I an I = 0 n1/2T(n + ex + ~ + fL + 2) n1/2T(n + ex + ~ + fL + 2)

= O(n-"-1/2). (3.3)

Thus, in the case that fL > ex + t, the function I x I" belongs to A(ex, ~).

In the ultraspherical case (ex = ~), the Fourier coefficients can easily be
calculated. We have

an = (hn(ex, ex))-1 f
1
I X I" P~ct,ct)(x)(1 - x2)ct dx.

Because I x I" is an even function, the Fourier coefficients vanish for odd n.
Application of a well-known formula for ultraspherical polynomials (see
Szego [5, 4.1.5]) yields

a2n = 2n! T(2n + ex + 1) Jl P<ct,-1/2)(y)(1 _ y)ct(1 + y)l"-I) /2 dy
h2nCex, ex)(2n)! T(n + ex + 1) 0 n

(-I)n(4n+ 2ex + I)T(2n + 2ex + 1)T(fL+ 1)sin(fLj2)1TT(n-(fLj2)

22ct+"+lT(2n + ex + 1) T(n + ex + (fLj2) + !) 1T1/2

(3.4)

From (3.3) and (3.4) it follows that if y > ex, the function I x I", with
ex + t < fL < y + t, fL not an even integer, belongs to A(ex, ~) but not to
A(y, y). Combined with Theorem 2, this leads to the conclusion that rela­
tion (A) cannot hold in region III of Fig. 2.

Thus the shaded region in Fig. 2 is exactly the set (if y ? -t) where
relation (A) holds.

By using the identity p~a·/3)(x) = (_1)n P<Il.ct)(-x), similar results can be
obtained when ex < f3.
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